Optimal Detection For Sparse Mixtures
نویسندگان
چکیده
Detection of sparse signals arises in a wide range of modern scientific studies. The focus so far has been mainly on Gaussian mixture models. In this paper, we consider the detection problem under a general sparse mixture model and obtain an explicit expression for the detection boundary. It is shown that the fundamental limits of detection is governed by the behavior of the log-likelihood ratio evaluated at an appropriate quantile of the null distribution. We also establish the adaptive optimality of the higher criticism procedure across all sparse mixtures satisfying certain mild regularity conditions. In particular, the general results obtained in this paper recover and extend in a unified manner the previously known results on sparse detection far beyond the conventional Gaussian model and other exponential families.
منابع مشابه
A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملOptimal detection of heterogeneous and heteroscedastic mixtures
The problem of detecting heterogeneous and heteroscedastic Gaussian mixtures is considered. The focus is on how the parameters of heterogeneity, heteroscedasticity, and proportion of non-null component influence the difficulty of the problem. We establish an explicit detection boundary which separates the detectable region where the likelihood ratio test is shown to reliably detect the presence...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1211.2265 شماره
صفحات -
تاریخ انتشار 2012